• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação

Simplificação

Mensagempor Danilo » Ter Ago 14, 2012 15:57

Se a>0, mostre que:

\frac{1}{{a}^{\frac{1}{4}} + {a}^{\frac{1}{8}} + 1 } + \frac{1}{{1}^{\frac{1}{4}} - {a}^{\frac{1}{8}} + 1} - \frac{2\left({a}^{\frac{1}{4} } - 1 \right)}{{a}^{\frac{1}{2}} - {a}^{\frac{1}{4}} + 1 } = \frac{4}{a + \sqrt[]{a} + 1}

comecei tentando:

\frac{1}{\sqrt[4]{a} + \sqrt[8]{a} + 1} + \frac{1}{\sqrt[4]{a} - \sqrt[8]{a} + 1} - \frac{2\left(\sqrt[4]{a} - 1 \right)}{\sqrt[]{a} - \sqrt[4]{a} + 1} =

E eu meio que travo aqui. O ideal seria racionalizar cada fração? Ou tirar o mmc? Se eu tenho que tirar o mmc, como eu faria neste caso?

obs: Há algum problema de eu fazer várias perguntas (em um curto intervalo de tempo) mesmo sendo cada pergunta em cada tópico?
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Simplificação

Mensagempor e8group » Ter Ago 14, 2012 17:34

Já tentou completar quadrados no denominador ?

EX.: (a^{1/4} + a^{1/8} +1) = (a^{1/8} +1)^2 - a^{1/8} .Tente começar assim ,acho que fica mais fácil .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)