• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema simples de operações com números naturais - EF

problema simples de operações com números naturais - EF

Mensagempor juliahess » Ter Jul 31, 2012 12:55

[Operações com números naturais]
Um número tem 15 algarismos e outro 4. O produto deles tem no mínimo ............ algarismos e no máximo ............. algarismos.

Resposta: 18 e 19.

Estou passando problemas do Livro "Questões de Matemática" de Manoel Jairo Bezerra para a minha filha de 10 anos, dentro do conteúdo que ela consegue fazer.

Quando tentamos resolver juntas este problema, chegamos facilmente à 1a parte da resposta. Pois o menor número de 4 algarismos seria 1.000. Então qualquer número de 15 algarismos multiplicado por 1000, teria, no mínimo 18 algarismos. No entanto, não entendemos a parte da quantidade máxima de algarismos (19)? Alguém saberia explicar?

Obrigada desde já,

Julia
juliahess
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jul 31, 2012 12:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel Matemática/Informática
Andamento: formado

Re: problema simples de operações com números naturais - EF

Mensagempor DanielFerreira » Ter Jul 31, 2012 21:26

Olá Julia,
boa noite e seja bem-vinda!!

Tomemos alguns exemplos p/ facilitar o entendimento!

Multipliquemos os maior número de dois algarismos com o maior de um algarismo:
99 \times 9 = 3 algarismos

Maior de três algarismos com o maior de dois:
999 \times 99 = 5 algarismos

Note que a quantidade de máxima de algarismos é dada pela SOMA.
Ex 1.:
2 + 1 =
3

Ex 2.:
3 + 2 =
5

Segue que,
15 + 4 =
19 algarismos

Espero ter ajudado!!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}