• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida sobre a resolução de um exercício

Dúvida sobre a resolução de um exercício

Mensagempor Danilo » Qua Jul 25, 2012 12:15

Preciso da ajuda de alguém para entender a resolução de um exercício.

Se a e b são números reais tais que 1? a< b? 9, qual o menor valor que (a+b)/ab pode assumir?

Segue a resolução:

(a+b)/ab = a/ab+b/ab= 1/b +1/a

Assim a expressão (a+b)/ab = 1/b + 1/a

Será mínima quando os denominadores a e b forem máximos, ou seja a=8 e b=9 (note que, por hipótese a
(a+b)/ab = (8+9)/(8x9) = 17/72



Minha dúvida é: Até aceito que o valor máximo de b seja 9 pois b é menor ou igual a 9. Mas por que o valor máximo de a é necessariamente 8? Se a é um número real não poderia ser, por exemplo, 8.5? É isso. Agradeço a quem puder explicar !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida sobre a resolução de um exercício

Mensagempor Danilo » Qua Jul 25, 2012 12:35

Acabei de verificar aqui. De fato, está errado o que está escrito no livro. Encontrei o exercício em outro ''local'' e estava escrito ''inteiro'' ai invés de número real.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59