• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Correção inequação

Correção inequação

Mensagempor Andrewo » Qua Jun 06, 2012 13:24

Boa tarde, tô com 2 probleminhas aí que gostaria que vocês corrigissem

1) Se a<-2, os valores de x tais que \frac{a}{2}(x-a)<-(x+2), são aquelas que satisfazem:

Resp: x>a-2






Como eu fiz:
\frac{ax}{2}-\frac{{a}^{2}}{2}<-x-2

ax-{a}^{2}<-2x-4

ax+2x<-4+{a}^{2}

x<\frac{-4+{a}^{2}}{a+2} divide por a e 2 em cima e em baixo, fica:

x<-2+a

O resultado ficou parecido mas não bateu o sinal de maior/menor com o gabarito








2) Sejam a e b dois números reais tais que a < b. Se ax-bx>{a}^{2}-{b}^{2}, então:

Resp: x < a + b






Como eu fiz:

x(a-b)>(a-b)(a+b)

x>\frac{(a-b)(a+b)}{(a-b)} simplificando

x> a+b


Novamente a posição do sinal não bateu com a do gabarito :s

Gostaria que me esclarecessem



:y: :y: :y:
Avatar do usuário
Andrewo
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Qui Jan 12, 2012 11:22
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Correção inequação

Mensagempor Andrewo » Sex Jun 08, 2012 11:25

Ngm sabe? *-)
Avatar do usuário
Andrewo
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Qui Jan 12, 2012 11:22
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Correção inequação

Mensagempor MarceloFantini » Sex Jun 08, 2012 15:50

A primeira resposta não bateu com o gabarito porque você esqueceu da sua hipótese que a < -2. Lembre-se: quando dizemos que a< -2 isto significa que a+2 < 0, ou seja, é um número negativo. Ao multiplicar ou dividir uma inequação por um número negativo trocamos a desigualdade, o que você não fez.

Na segunda, novamente você errou ao não perceber isso: se b>a, então b-a> 0 e equivalentemente a-b<0. Ao dividir ambos lados por a-b você dividiu por um número negativo, portanto trocamos a desigualdade.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59