• Anúncio Global
    Respostas
    Exibições
    Última mensagem

potenciação

potenciação

Mensagempor ALLYSON_WEYDER » Qui Mai 24, 2012 00:08

\frac{15}{45} sendo que o 15 está elevado a 30 e o 45 a 15. Sei que tem que transformar para a mesma base, até já sei a resposta que é 5 elevado a 15, e subtrair os expoentes mas não estou conseguindo.
ALLYSON_WEYDER
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 23, 2012 23:43
Formação Escolar: GRADUAÇÃO
Área/Curso: ciências econômicas
Andamento: cursando

Re: potenciação

Mensagempor DanielFerreira » Qui Mai 24, 2012 11:31

\frac{(15)^{30}}{(45)^{15}} ====> \frac{(3.5)^{30}}{(3^2.5)^{15}} ====>\frac{3^{30}.5^{30}}{3^{30}.5^{15}} ====> \frac{5^{30}}{5^{15}} ====> 5^{15}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.