por LuizCarlos » Sáb Mai 05, 2012 00:14
Olá amigos professores! estou aqui resolvendo uns exercícios, porém essa questão não estou conseguindo resolver!
![\sqrt[]{169{x}^{2}+104xy+16{y}^{2}} = \sqrt[]{{13}^{2}.{x}^{2}+{2}^{2}.13.2+{2}^{2}.{2}^{2}.{y}^{2}}=\sqrt[]{{13}^{2}.{x}^{2}}+\sqrt[]{{2}^{2}.26}+\sqrt[]{{2}^{2}.{2}^{2}.{y}^{2}}= 13.x + 2.\sqrt[]{26}+ 4.y \sqrt[]{169{x}^{2}+104xy+16{y}^{2}} = \sqrt[]{{13}^{2}.{x}^{2}+{2}^{2}.13.2+{2}^{2}.{2}^{2}.{y}^{2}}=\sqrt[]{{13}^{2}.{x}^{2}}+\sqrt[]{{2}^{2}.26}+\sqrt[]{{2}^{2}.{2}^{2}.{y}^{2}}= 13.x + 2.\sqrt[]{26}+ 4.y](/latexrender/pictures/ba686c39d12a5bcbc0ac284988628376.png)
Não estou conseguindo entender como resolver! tentei dessa forma! obrigado desde já.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por MarceloFantini » Sáb Mai 05, 2012 00:38
Luiz Carlos, isto é falso. Note que

, por exemplo.
Para a resolução deste problema é necessário perceber um trinômio quadrado perfeito:

.
Colocando a raíz quadrada, temos

onde

representa o módulo do valor. Provavelmente é aceitável que você dê a resposta como

caso ainda não tenha aprendido isto.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizCarlos » Sáb Mai 05, 2012 10:25
MarceloFantini escreveu:Luiz Carlos, isto é falso. Note que

, por exemplo.
Para a resolução deste problema é necessário perceber um trinômio quadrado perfeito:

.
Colocando a raíz quadrada, temos

onde

representa o módulo do valor. Provavelmente é aceitável que você dê a resposta como

caso ainda não tenha aprendido isto.
Obrigado MarceloFantine, agora conseguir perceber esse trinômio quadrado perfeito! gostaria de saber a respeito dessa questão de módulo que você citou!
como ficaria com essa resposta!
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por MarceloFantini » Sáb Mai 05, 2012 14:00
É que temos a definição que

, portanto apenas apliquei a definição. O módulo garante que seja um número positivo e portanto que a raíz seja positiva.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Simplificação de raízes.
por Sobreira » Qui Mai 09, 2013 22:21
- 1 Respostas
- 1233 Exibições
- Última mensagem por brunnkpol

Qui Mai 09, 2013 23:49
Aritmética
-
- simplificação de raízes
por ezidia51 » Seg Mar 12, 2018 23:39
- 2 Respostas
- 2632 Exibições
- Última mensagem por ezidia51

Ter Mar 13, 2018 12:21
Aritmética
-
- [simplificação de expressoes] eliminar raizes
por bira19 » Qui Out 06, 2011 23:33
- 2 Respostas
- 2320 Exibições
- Última mensagem por bira19

Dom Out 09, 2011 17:47
Álgebra Elementar
-
- Simplificação - Ajuda Dúvidas em relação a simplificação
por wgf » Qui Mai 16, 2013 12:56
- 1 Respostas
- 2229 Exibições
- Última mensagem por DanielFerreira

Dom Mai 19, 2013 18:03
Equações
-
- [raízes de números complexos] Raízes de uma equação com grau
por karenfreitas » Seg Ago 22, 2016 19:08
- 1 Respostas
- 7982 Exibições
- Última mensagem por adauto martins

Sáb Ago 27, 2016 16:11
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.