• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Espaço vetorial]-Combinação Linear

[Espaço vetorial]-Combinação Linear

Mensagempor Ana_Rodrigues » Sáb Abr 28, 2012 16:21

Escreva se possível, os vetores u=2{x}^{2}+3x e v=3{x}^{2}-{x}^{3}+4x como combinação linear dos vetores \alpha={x}^{2}-{x}^{3}+x e \beta=-{x}^{2}+3x+1


Alguém pode me ajudar com essa questão? não encontro um meio de resolvê-la.
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Espaço vetorial]-Combinação Linear

Mensagempor MarceloFantini » Dom Abr 29, 2012 15:16

Você tentou escrever u =c_1 \alpha + c_2 \beta, v = d_1 \alpha + d_2 \beta e a partir disso resolver para encontrar o valor das constantes?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Espaço vetorial]-Combinação Linear

Mensagempor Ana_Rodrigues » Dom Abr 29, 2012 16:48

eu comecei fazendo assim

u={c}_{1}\alpha + {c}_{2}\beta
2{x}^{2}+3={c}_{1}({x}^{2}-{x}^{3}+x) + {c}_{2}(-{x}^{2}+3x+1)
2{x}^{2}+3=-{x}^{3}{c}_{1}+{x}^{2}({c}_{1}-{c}_{2})+x({c}_{1}+3{c}_{2})+{c}_{2}

Daí eu não consegui achar alguma forma de provar que este vetor é ou não um subespaço gerado pelos vetores alfa e beta

Para o vetor v eu tenho:

-{x}^{3}+3{x}^{2}+4x=-{x}^{3}{c}_{1}+{x}^{2}({c}_{1}-{c}_{2})+x({c}_{1}+3{c}_{2})+{c}_{2}
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)