• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de Dois Radicais Cúbicos

Soma de Dois Radicais Cúbicos

Mensagempor sony01 » Sex Abr 27, 2012 12:10

A expressão x = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} é múltiplo de 4. Essa afirmação é verdadeira ou falsa? Justifique matemáticamente.

Cálculo

Eu sei que: (A + B)^3 = A^3 + 3A^2B + 3AB^2 + B^3

x = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}

x^3 = (\sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}})^3

x^3 = 20 + \not 14 \sqrt{2} + 3( \sqrt[3]{20 + 14\sqrt{2}})^2 \cdot (\sqrt[3]{20 - 14\sqrt{2}}) + 3( \sqrt[3]{20 + 14\sqrt{2}}) \cdot (\sqrt[3]{20 - 14\sqrt{2}})^2 + 20 - \not 14 \sqrt{2}

x^3 = 40 + 3( \sqrt[3]{20 + 14\sqrt{2}}) \cdot (\sqrt[3]{20 - 14\sqrt{2}}) \cdot \left[  \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} \right]

x^3 = 40 + 3( \sqrt[3]{400 - 392}) \cdot \left[ \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}} \right]

Mas, x = \sqrt[3]{20 + 14\sqrt{2}} + \sqrt[3]{20 - 14\sqrt{2}}, então eu posso substituir:

x^3 = 40 + 3\sqrt[3]{8} \cdot x
x^3 = 40 + 6x
x^3 - 6x - 40 = 0
x^3 - 64 - 6x + 24 = 0
(x - 4) \cdot (x^2 + 4x  + 16) - 6(x - 4) = 0
(x - 4) \cdot (x^2 + 4x + 16 - 6) = 0
(x - 4) \cdot (x^2 + 4x + 10)

Resolvendo (x - 4):

x - 4 = 0
x = 4

Logo, verdadeira!
Pessoal, primeiramente gostaria de saber se existe algum modo "mais fácil" de se chegar a este resultaldo, também gostaria de saber o nível dessa questão de 1 a 10 tendo como base um aluno do 9º ano.

Desde já Agradeço! :)
"Quem estuda sabe mais" - Filosofia de vida!
sony01
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Mar 04, 2012 16:28
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Inglês
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.