• Anúncio Global
    Respostas
    Exibições
    Última mensagem

N consegui resolver a potenciacao!

N consegui resolver a potenciacao!

Mensagempor bmachado » Seg Abr 23, 2012 23:27

(Mackenzie 96) Se ({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{x-1}.{k}^{y}.5^{t+1})^{-1}=150
, então k vale:
a) 1
b) 2
c) 3
d) 4
e) 5

Obs; estudo sozinho e n sei nem por onde começar!Obrigado pela colaboração!
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado

Re: N consegui resolver a potenciacao!

Mensagempor Russman » Ter Abr 24, 2012 02:28

Quando se multiplicam potencias de mesma base o resultado é a base elevada a soma dos expoentes das potências anteriores, isto é,

{x}^{a}.{x}^{b} = {x}^{a+b}.

E ainda existe a propriedade
{({x}^{a}.{x}^{b})}^{-c} = ({x}^{-ac}.{x}^{-bc})


Assim, seu problema se resume a
({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{x-1}.{k}^{y}.5^{t+1})^{-1} = ({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{-(x-1)}.{k}^{-y}.5^{-(t+1)}) =

={2}^{x-x+1}.{k}^{y+1-y}.{5}^{t+3-t-1}=2.k.{5}^{2} = 150 \Rightarrow k = \frac{150}{50} = 3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: N consegui resolver a potenciacao!

Mensagempor bmachado » Ter Abr 24, 2012 23:23

Russman escreveu:Quando se multiplicam potencias de mesma base o resultado é a base elevada a soma dos expoentes das potências anteriores, isto é,

{x}^{a}.{x}^{b} = {x}^{a+b}.

E ainda existe a propriedade
{({x}^{a}.{x}^{b})}^{-c} = ({x}^{-ac}.{x}^{-bc})


Assim, seu problema se resume a
({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{x-1}.{k}^{y}.5^{t+1})^{-1} = ({2}^{x}.k^{y+1}.{5}^{t+3}).(2^{-(x-1)}.{k}^{-y}.5^{-(t+1)}) =

={2}^{x-x+1}.{k}^{y+1-y}.{5}^{t+3-t-1}=2.k.{5}^{2} = 150 \Rightarrow k = \frac{150}{50} = 3.

S


Obrigado pela ajuda, pois, estudar Sozinho depois De anos é uma luta, valeu!
bmachado
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Fev 29, 2012 00:28
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: EF
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59