• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Re: Fração algébrica

Re: Fração algébrica

Mensagempor LuizCarlos » Sáb Abr 21, 2012 09:10

Olá amigos, bom dia! estou resolvendo frações algébricas, faço bastantes exercícios para pegar a prática, porém as vezes alguns não consigo resolver! por exemplo esse aqui:

\frac{1}{1+a} + \frac{1}{1-a}-\frac{2a}{1-{a}^{2}} = \frac{1(a-1)+1(a+1)-1(2a)}{(a+1)(a-1)} = 2 - 2a
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Fração algébrica

Mensagempor Cleyson007 » Sáb Abr 21, 2012 11:07

Bom dia Luiz Carlos!

O numerador está correto! Luiz, o que você fez com o denominador?

Por favor, reveja sua resolução :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Fração algébrica

Mensagempor DanielFerreira » Sáb Abr 21, 2012 13:10

LuizCarlos escreveu:Olá amigos, bom dia! estou resolvendo frações algébricas, faço bastantes exercícios para pegar a prática, porém as vezes alguns não consigo resolver! por exemplo esse aqui:

\frac{1}{1+a} + \frac{1}{1-a}-\frac{2a}{1-{a}^{2}} = \frac{1(a-1)+1(a+1)-1(2a)}{(a+1)(a-1)} = 2 - 2a


\frac{1}{1 + a} + \frac{1}{1 - a} - \frac{2a}{1 - a^2} =


\frac{1}{1 + a} + \frac{1}{1 - a} - \frac{2a}{(1 + a)(1 - a)} =


\frac{1(1 - a) + 1(1 + a) - 2a}{(1 + a)(1 - a)} =


\frac{1 - a + 1 + a - 2a}{(1 + a)(1 - a)} =


\frac{2 - 2a}{(1 + a)(1 - a)} =


\frac{2(1 - a)}{(1 + a)(1 - a)} =


\frac{2}{(1 + a)} =

Note que,
(1 + a)(1 - a) \neq (a + 1)(a - 1)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Fração algébrica

Mensagempor LuizCarlos » Sáb Abr 21, 2012 13:23

danjr5 escreveu:
LuizCarlos escreveu:Olá amigos, bom dia! estou resolvendo frações algébricas, faço bastantes exercícios para pegar a prática, porém as vezes alguns não consigo resolver! por exemplo esse aqui:

\frac{1}{1+a} + \frac{1}{1-a}-\frac{2a}{1-{a}^{2}} = \frac{1(a-1)+1(a+1)-1(2a)}{(a+1)(a-1)} = 2 - 2a


\frac{1}{1 + a} + \frac{1}{1 - a} - \frac{2a}{1 - a^2} =


\frac{1}{1 + a} + \frac{1}{1 - a} - \frac{2a}{(1 + a)(1 - a)} =


\frac{1(1 - a) + 1(1 + a) - 2a}{(1 + a)(1 - a)} =


\frac{1 - a + 1 + a - 2a}{(1 + a)(1 - a)} =


\frac{2 - 2a}{(1 + a)(1 - a)} =


\frac{2(1 - a)}{(1 + a)(1 - a)} =


\frac{2}{(1 + a)} =

Note que,
(1 + a)(1 - a) \neq (a + 1)(a - 1)


Olá amigo, danjr5, era exatamente isso que estava observando, a ordem que atrapalhou tudo hehe! por isso na minha conta, estava cancelando os numeradores com os denominadores, restando apenas 2 - 2a.

Obrigado pela ajuda, já tinha observando a ordem, mas pensei que não haveria problema!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Fração algébrica

Mensagempor LuizCarlos » Sáb Abr 21, 2012 13:25

Cleyson007 escreveu:Bom dia Luiz Carlos!

O numerador está correto! Luiz, o que você fez com o denominador?

Por favor, reveja sua resolução :y:

Até mais.


È porque eu cancelei numerador com denominador, mas por causa da ordem que estava resultando isso! mas já consegui entender! obrigado amigo Cleyson007, são tantos a, x, d , b kkkk que o cara vai ficando é doido!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Fração algébrica

Mensagempor DanielFerreira » Sáb Abr 21, 2012 16:44

vlw.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}