por Well » Dom Abr 01, 2012 18:14
Tentei provar por absurdo,porém não conseguir desenvolver a demonstração
A afirmação é esta
Se
a é par e não é quadrado perfeito
![\Rightarrow \sqrt[]{a} \Rightarrow \sqrt[]{a}](/latexrender/pictures/237d4b1ac1f3ac5c9b00292f46d0efdc.png)
é irracional
Obrigado.
-
Well
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Qua Mar 28, 2012 21:22
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por fraol » Dom Abr 01, 2012 23:02
Boa noite,
Vou apresentar uma prova usando um raciocínio parecido com aquele que usamos quando provamos que

é irracional, vejam se vocês concordam:
Vamos assumir que

é racional, isto é
com

e

inteiros positivos,

,

e

primos entre si.
Como

é par, seja

,

um número primo. Então

,

pois

não é quadrado perfeito,
Disso temos

então 2 divide

logo 2 divide

.
Assim, seja

, então
Vemos que 2 divide o primeiro membro da equação, então 2 divide o segundo membro também.
2 não divide

, pois assumimos

sendo um número primo. Então 2 deve dividir

e portanto 2 divide

.
Temos então que 2 é um fator de

e 2 é um fator de

. Dessa forma

e

não são primos entre si, o que contradiz a nossa hipótese.
Logo

é irracional.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por fraol » Seg Abr 02, 2012 00:04
Pessoal,
Apesar de prosaica, quando redigi a prova, ela me parecia tão válida. Porém, relendo agora há pouco vi que tem uma hipótese que não está boa, aquela que supõe a = 2k, k um número primo.
Pois podemos ter, por exemplo, k = 9 que evidentemente não é primo.
Deveríamos considerar k como sendo um conjunto de fatores primos.
Mesmo assim vou pensar mais um pouco.
Sugestões?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por fraol » Seg Abr 02, 2012 14:42
Pessoal, quebrando a cabeça, olhando aqui e acolá encontrei uma nova forma de mostrar que a afirmação é verdadeira.
O método, como quase sempre, é por contradição.
Vamos supor que

sendo que

é um número racional na forma de fração irredutível e portanto

é mínimo (o menor valor que satisfaz essa igualdade).
Assim

.
Como

é par então

, então

e

senão

seria um quadrado perfeito.
Como

temos

.
Por outro lado,

, onde

é o resto da divisão euclidiana,

Se

então

é um quadrado perfeito logo

.
Se

então

então

então

.
Como

, temos uma contradição à nossa hipótese de que

é mímimo.
Logo

é irracional.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Logaritmos.( Prove tal afirmação )
por DanielRJ » Qui Out 14, 2010 18:15
- 5 Respostas
- 3611 Exibições
- Última mensagem por MarceloFantini

Sex Out 15, 2010 18:41
Logaritmos
-
- suponha que a # 1 . Mostre que P é verdadeira ...
por abdeco » Seg Mar 30, 2015 12:09
- 0 Respostas
- 1456 Exibições
- Última mensagem por abdeco

Seg Mar 30, 2015 12:09
Álgebra Elementar
-
- Justificar a afirmação
por silvanuno11 » Sex Mai 25, 2012 12:45
- 2 Respostas
- 3978 Exibições
- Última mensagem por silvanuno11

Seg Mai 28, 2012 06:36
Binômio de Newton
-
- Justificar a afirmação
por silvanuno11 » Dom Mai 27, 2012 16:30
- 1 Respostas
- 1553 Exibições
- Última mensagem por PeterHiggs

Qui Mai 31, 2012 11:22
Álgebra Elementar
-
- [Matrizes] Comentar uma afirmação
por fff » Sex Out 10, 2014 07:56
- 0 Respostas
- 2375 Exibições
- Última mensagem por fff

Sex Out 10, 2014 07:56
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.