por Glauber2012 » Sex Mar 23, 2012 23:32
Prezados (as),
Estou me preparando para concursos e me deparei com o seguinte problema:
Achar o resto da divisão do numero 357^234 por 11.
Desculpe se está mal escrito ou explicado pois é a primeira vez que participo e tenho 13 anos.
No caso exposto, achei muito difícil e chei que deve haver algum macete para a resolução. Comecei multiplicando 357 por 357 e achei um valor que não me recordo na sua íntegra, ma tem o último algaritmo 9, pois 7 vezes 7 é 49. na segunda multiplicação dá 63, pois 7x9= 63, na terceira, 1, pois 7x3=21, na quarta, 7, pois 7x1= 7, na quinta, voltamos ao 9 pois 7x7=49. pronto! formei uma sequencia de últimos algarítimos - 9,3,1,7, 9 . acho que o resto está entre estes números mas não tenho certeza. Por esta razão, já pedindo desculpas se minha lógica foi errada, peço, por gentileza que, se possível e estiver dentro da finalidade do fórum, esclareçam minha dúvida.
OBS: Desculpe pelo fato de ter criado esse fórum uma vez que já coloquei a questão em outro, mas notei que a primeira postagem do outro fórum era muito antiga e fiquei com medo de não me responderem.
Desde já agradeço,
Glauber
POR FAVOR ME AJUDEM O MAIS RÀPIDO POSSÍVEL
-
Glauber2012
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Mar 23, 2012 20:46
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Potências...
por Estela » Dom Mai 04, 2008 22:15
- 3 Respostas
- 2449 Exibições
- Última mensagem por Glauber2012

Sex Mar 23, 2012 21:23
Álgebra Elementar
-
- Potências
por Jhennyfer » Dom Abr 28, 2013 14:15
- 5 Respostas
- 6561 Exibições
- Última mensagem por Cleyson007

Seg Abr 29, 2013 12:03
Teoria dos Números
-
- Potências
por Jhennyfer » Qui Mai 16, 2013 11:31
- 3 Respostas
- 2059 Exibições
- Última mensagem por Victor Gabriel

Qui Mai 16, 2013 13:12
Álgebra Elementar
-
- Expressão com potências!
por luizduvidas » Dom Set 25, 2011 01:12
- 1 Respostas
- 1334 Exibições
- Última mensagem por nietzsche

Dom Set 25, 2011 11:27
Álgebra Elementar
-
- Transformação de Potências
por FilipeX » Qua Mar 21, 2012 22:10
- 1 Respostas
- 1847 Exibições
- Última mensagem por joaofonseca

Qua Mar 21, 2012 22:38
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.