por LuizCarlos » Ter Mar 13, 2012 17:58
Olá amigos. Minha dúvida é a seguinte:
Estou conseguindo resolver questões de subtração de números inteiros, mas não estou conseguindo entender a ideia de diferença entre números inteiros, não estou conseguindo fazer uma analogia com alguma coisa, para que eu consiga entender o conceito de diferença entre números inteiros.
Na adição de números inteiros consigo fazer a analogia com dinheiro, pensando em dívida , e o que tenho para paga-la.
Mas já na subtração não consigo fazer essa analogia.
Gostaria de exemplos para tornar minha mente clara nesse assunto.
Agradeço desde já a todos.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por LuizAquino » Ter Mar 13, 2012 18:29
LuizCarlos escreveu:Estou conseguindo resolver questões de subtração de números inteiros, mas não estou conseguindo entender a ideia de diferença entre números inteiros, não estou conseguindo fazer uma analogia com alguma coisa, para que eu consiga entender o conceito de diferença entre números inteiros.
Na adição de números inteiros consigo fazer a analogia com dinheiro, pensando em dívida , e o que tenho para paga-la.
Mas já na subtração não consigo fazer essa analogia.
Pense em uma régua diferente, que no seu meio temos o número 0. Antes do número 0, vamos colocar os números negativos. Já depois do número 0, os positivos.
A figura abaixo ilustra essa régua.

- régua.png (931 Bytes) Exibido 1091 vezes
Nessa régua, o que significa -5 - (-2)? E o que significa -2 - (-5)?
A subtração a - b, com a e b números nessa reta, significa o tanto que devemos andar para ir de b até a, sendo que o sinal do resultado indica se devemos andar da esquerda para direita ou se devemos andar da direita para a esquerda.
Por exemplo, temos que -5 - (-2) = -3. Isso significa que partindo de -2, devemos andar 3 unidades para a esquerda de -2 até chegar no -5.
Por outro lado, temos que -2 - (-5) = 3. Isso significa que partindo de -5, devemos andar 3 unidades para a direita de -5 até chegar no -2.
Agora tente fazer outras subtrações entre inteiros seguindo essa ideia.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por LuizCarlos » Ter Mar 13, 2012 19:20
Agora consegui intender amigo Luiz Aquino, fazendo essa analogia, dessa forma fica mais fácil de perceber.
Muito obrigado, continue ajudando quem precisa de ajuda.
Abraço e sucesso.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Operações com números inteiros
por Danilo Dias Vilela » Sáb Mar 06, 2010 01:22
- 1 Respostas
- 2960 Exibições
- Última mensagem por Molina

Sáb Mar 06, 2010 14:46
Álgebra Elementar
-
- [números naturais/inteiros: operações] questão UERJ
por XxXMarlonXxX » Qui Out 04, 2012 16:57
- 10 Respostas
- 8933 Exibições
- Última mensagem por LuizAquino

Sex Out 05, 2012 15:32
Aritmética
-
- problema simples de operações com números naturais - EF
por juliahess » Ter Jul 31, 2012 12:55
- 1 Respostas
- 1153 Exibições
- Última mensagem por DanielFerreira

Ter Jul 31, 2012 21:26
Álgebra Elementar
-
- números inteiros
por thadeu » Qui Nov 19, 2009 11:41
- 2 Respostas
- 1940 Exibições
- Última mensagem por thadeu

Qui Nov 19, 2009 13:46
Álgebra Elementar
-
- numeros inteiros
por edwilsoncrep » Qui Mar 04, 2010 20:03
- 5 Respostas
- 6180 Exibições
- Última mensagem por adriana_borges

Dom Mai 09, 2010 12:04
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.