• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dízimas Periódicas - Indução

Dízimas Periódicas - Indução

Mensagempor m0x0 » Seg Set 12, 2011 17:10

Boas a todos,

Estou perante uma dúvida de como provar o seguinte por indução:

Mostrar que \frac{1}{{10}^{n}+1} tem expansão puramente periódica com período 2n.

Como {10}^{n}+1 nunca é divisível nem por 2 nem por 5, temos n=2^{s}5^{r}t=2^{0}5^{0}t=t então estamos perante uma dízima puramente periódica.

Para demonstrar que o período é k=2n, penso que por indução se possa calcular:

Caso base:

Temos que P(1): \frac{1}{{10}^{1}+1}=\frac{1}{11}=0,(09), ou seja, período 2.

Temos que P(2): \frac{1}{{10}^{2}+1}=\frac{1}{101}=0,(0099), ou seja, período 4.

Temos que P(3): \frac{1}{{10}^{3}+1}=\frac{1}{1001}=0,(000999), ou seja, período 6.

etc...

Passo de Indução:

P(k)=>P(k+1)

Temos que: P(k+1)=\frac{1}{{10}^{k+1}+1}=\frac{1}{10^{k}10^{1}+1}

A minha dúvida é passar daqui e provar que tem período sempre k=2n (pelos exemplos vemos que sim, mas falta a prova).

Se alguém me puder ajudar agradecia.

Abraço!
m0x0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Jul 21, 2011 15:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59