• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dízimas Periódicas - Indução

Dízimas Periódicas - Indução

Mensagempor m0x0 » Seg Set 12, 2011 17:10

Boas a todos,

Estou perante uma dúvida de como provar o seguinte por indução:

Mostrar que \frac{1}{{10}^{n}+1} tem expansão puramente periódica com período 2n.

Como {10}^{n}+1 nunca é divisível nem por 2 nem por 5, temos n=2^{s}5^{r}t=2^{0}5^{0}t=t então estamos perante uma dízima puramente periódica.

Para demonstrar que o período é k=2n, penso que por indução se possa calcular:

Caso base:

Temos que P(1): \frac{1}{{10}^{1}+1}=\frac{1}{11}=0,(09), ou seja, período 2.

Temos que P(2): \frac{1}{{10}^{2}+1}=\frac{1}{101}=0,(0099), ou seja, período 4.

Temos que P(3): \frac{1}{{10}^{3}+1}=\frac{1}{1001}=0,(000999), ou seja, período 6.

etc...

Passo de Indução:

P(k)=>P(k+1)

Temos que: P(k+1)=\frac{1}{{10}^{k+1}+1}=\frac{1}{10^{k}10^{1}+1}

A minha dúvida é passar daqui e provar que tem período sempre k=2n (pelos exemplos vemos que sim, mas falta a prova).

Se alguém me puder ajudar agradecia.

Abraço!
m0x0
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qui Jul 21, 2011 15:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}