• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Prove que cada inteiro "a" tem um unico oposto

Prove que cada inteiro "a" tem um unico oposto

Mensagempor zero » Dom Mar 08, 2009 20:43

Algúem pode me ajudar neste prove ? Não sei nem como começar .... desde de já agradeço atenção de quem responder !
Abraço

Prove que cada inteiro "a" tem um unico oposto
zero
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mar 08, 2009 20:38
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Prove que cada inteiro "a" tem um unico oposto

Mensagempor andregoulart » Seg Mar 09, 2009 16:51

O conjunto dos inteiros A e sendo (+) e (.) operações e A a terna ( A,+,.) é um anel e pelas propriedades.

A1 (adição associativa ) Quaisquer que sejam a,b,c pertencente a A, tem-se que (a+b) +c = a+(b+c)
A2 ( Adição é comutativa). Quaisquer que sejam a,b,c pertencente a A, tem-se que a+b=b+a

O simétrico de um elemento a pertencente A é único. De fato se a1 e a2 são dois simétricos do conjunto, então pelas propriedades A1 e A2, temos que:

a2= 0+a2=(a1+a) +a2= a1+( a+a2)=a1+0= a1

Este único simétrico de alfa será simbolizado por - a.

Desculpe mais não consegui utilizar o tex e colocar com símbolos gregos. Espero ter ajudado.
andregoulart
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 09, 2009 15:08
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Prove que cada inteiro "a" tem um unico oposto

Mensagempor zero » Qua Mar 11, 2009 22:02

Obrigado amigo !
zero
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mar 08, 2009 20:38
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.