• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração

Fatoração

Mensagempor Claudin » Sex Ago 05, 2011 02:52

Não consigo encontrar uma maneira mais fácil de fatorar, tais expressões, alguém poderia passar algumas dicas. E peço também para que alguém verifique se a resolução está correta. (O exercício pede para que simplifique o máximo possível).

Deduzindo algumas raízes e utilizando o WolframAlpha, gostaria de saber se tem algumas dicas para fatoração de polinômios.

Resolução:

\frac{a^2+a-2}{n-an-m+am}=\frac{\cancel{a}(a+1)-2}{\cancel{a}(-n+m)n-m}= \boxed{\frac{-2a-2}{(-n+m)n-m}}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fatoração

Mensagempor MarceloFantini » Sex Ago 05, 2011 13:40

Você não pode fazer isto. Note que \frac{a^2 +a -2}{n-an -m+am} = \frac{(a-1)(a+2)}{n(1-a) -m(1-a)} = \frac{(a-1)(a+2)}{-(a-1)(n-m)} = \frac{a+2}{m-n}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Fatoração

Mensagempor Claudin » Sex Ago 05, 2011 17:51

MarceloFantini escreveu:Você não pode fazer isto. Note que \frac{a^2 +a -2}{n-an -m+am} = \frac{(a-1)(a+2)}{n\boxed{(1-a)} -m\boxed{(1-a)}} = \frac{(a-1)(a+2)}{-(a-1)(n-m)} = \frac{a+2}{m-n}.



Mas tinha no denominador(1-a)e (1-a) porque na resolução final só ficou aparecendo 1 (1-a)

entendeu?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Fatoração

Mensagempor MarceloFantini » Sex Ago 05, 2011 17:53

Acho que sim, você quer dizer porque "dois" viraram "um"? Eu coloquei em evidência, juntamente com o -1.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.