• Anúncio Global
    Respostas
    Exibições
    Última mensagem

AjUUUUUUUUUDA

AjUUUUUUUUUDA

Mensagempor henriquefreitas » Qua Abr 27, 2011 00:57

1 - Em uma garagem ha carros e motos num total de 100 veiculos e 288 pneus sem considerar stepes podemos afirma que a diferença entre o numero de motos e carros é um numero compreendido entre

a) 0e8 b) 9e16 c) 17e22 d)23e26 e)27e32


2- Num determinado concurso havia apenas dois problemas : o problema A eo problema B. Corrigidas as provas vereficou-se que o do total de 1150 candidatos apenas 311 haviam acertado os dois problemas.Considerando que nenhum problemas deixou de ser analisado e que 587 candidatos haviam errado problema A podemos concluir que o numero de candidatos que acertaram apenas o problema A e igual a :


Po me ajuda nao consegui fazer ela. :D :-D
henriquefreitas
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Abr 24, 2011 06:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Questão 1

Mensagempor SidneySantos » Qua Abr 27, 2011 01:17

x + y = 100
4x + 2y = 288

x + y = 100
2x + y = 144

x = 44 e y = 56

y - x = 56 - 44 = 12

Letra B
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Questão 2

Mensagempor SidneySantos » Qua Abr 27, 2011 01:22

x + 311 + 587 = 1150

x = 1150 - 898

x = 252

Resp.: 252 acertaram apenas o problema A
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando


Voltar para Álgebra Elementar

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}