por renanrdaros » Ter Mar 22, 2011 23:33
Como faço para resolver esta inequação sem o método de elevar ambos os lados ao quadrado?
|x-2|<|x+1|
Sempre que tento resolver acabo cancelando a variável x em ambos os lados.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por MarceloFantini » Qua Mar 23, 2011 00:08
Tente passar

para o outro lado, avalie onde cada módulo é positivo e negativo e trabalhe com cada caso.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por renanrdaros » Qua Mar 23, 2011 00:58
Fantini,
Passei (x+1) para o outro lado, mas dá no mesmo. Continuo anulando a variável x.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por MarceloFantini » Qua Mar 23, 2011 01:00
Você não fez a avaliação que eu comentei. Existe um caso onde x não se anula.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por renanrdaros » Qua Mar 23, 2011 01:29
Valeu, Fantini.
Analisei os casos restantes e cheguei perto do resultado. Por que perto do resultado? Porque, pelos meus cálculos, eu tenho uma condição que me diz que x<2.
|x-2| = -x+2, se x-2<0 <-->
x<2 O resultado correto da questão seria: S=

Com a condição citada eu cheguei em S=

Onde é que eu tô fazendo a confusão???????
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Qua Mar 23, 2011 08:32
Analise o sinal dos termos (x+1) e (x-2) como já havia sido dito.

- inequacao-modular.png (3.06 KiB) Exibido 10915 vezes
Desse modo, a inequação |x-2|<|x+1| gera tem 3 inequações:
(i) -(x-2) < -(x+1), se x < -1.
(ii) -(x-2) < (x+1), se -1<= x < 2.
(iii) x-2 < x+1, se x >= 2.
Resolva cada uma das inequações e em seguida tome a união das soluções.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renanrdaros » Qua Mar 23, 2011 11:02
Luiz,
Eu estou resolvendo cada um dos casos, mas sempre chego em S=

por causa das condições.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Qua Mar 23, 2011 11:23
|x-2|<|x+1|
(i) -(x-2) < -(x+1), se x < -1.
x-2 > x+1
-2 > 1

(ii) -(x-2) < (x+1), se -1<= x < 2.
x-2 > -x-1
x > 1/2

(iii) x-2 < x+1, se x >= 2.
-2 < 1

Solução final:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renanrdaros » Qua Mar 23, 2011 11:31
LuizAquino escreveu:(iii) x-2 < x+1, se x >= 2.
-2 < 1
S3 = [2,\, +\infty)\cap \mathbb{R} = [2,\, +\infty)
Era sempre nessa parte que eu encalhava. Eu achava que por ficar sem uma variável x na resolução do problema, ele não tinha solução.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Qua Mar 23, 2011 12:10
Vale a pena enxergar a interpretação geométrica dessa inequação modular.
Se f(x)=|x-2| e g(x)=|x+1|, você quer saber quando que f(x)<g(x). Ou seja, quando o gráfico da função f está abaixo do gráfico da função g. A figura abaixo ilustra essa situação.

- graficos-funcoes-modulares.png (4.54 KiB) Exibido 10909 vezes
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renanrdaros » Qua Mar 23, 2011 17:05
LuizAquino escreveu:|x-2|<|x+1|
(i) -(x-2) < -(x+1), se x < -1.
x-2 > x+1
-2 > 1

(ii) -(x-2) < (x+1), se -1<= x < 2.
x-2 > -x-1
x > 1/2

(iii) x-2 < x+1, se x >= 2.
-2 < 1

Solução final:

LuizAquino,
Uma última dúvida: Por que você não aprensentou também o caso em que: |x-2|

0 e |x+1|<0 ??
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por renanrdaros » Qua Mar 23, 2011 17:06
Foi porque, de cara, uma condição anula a outra?
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
por LuizAquino » Qua Mar 23, 2011 17:19
Basta interpretar a análise dos sinais que fiz anteriormente e você deve perceber que temos que nos preocupar apenas com três casos:
(i) Quando x < -1.
(ii) Quando -1 <= x < 2.
(iii) Quando x >= 2.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por renanrdaros » Qua Mar 23, 2011 17:36
Foi o que eu quis dizer. Se eu fosse analisar um quarto caso ficaria:
(iv)

e

Uma condição estaria anulando a outra.
-
renanrdaros
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Sáb Mar 19, 2011 19:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. de Computação
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7035 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
-
- Dúvida em inequação modular
por Rafael16 » Sáb Dez 29, 2012 19:20
- 1 Respostas
- 1622 Exibições
- Última mensagem por e8group

Sáb Dez 29, 2012 20:53
Inequações
-
- Duvida Inequação Modular
por samysoares » Ter Jan 08, 2013 13:00
- 1 Respostas
- 1769 Exibições
- Última mensagem por young_jedi

Ter Jan 08, 2013 14:01
Inequações
-
- inequação modular
por manuoliveira » Dom Ago 22, 2010 22:30
- 1 Respostas
- 3267 Exibições
- Última mensagem por Dan

Seg Ago 23, 2010 15:38
Álgebra Elementar
-
- Inequação modular
por scggomes » Qui Abr 21, 2011 17:22
- 3 Respostas
- 2956 Exibições
- Última mensagem por MarceloFantini

Qui Abr 21, 2011 20:54
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.