• Anúncio Global
    Respostas
    Exibições
    Última mensagem

E ou OU ou E e OU ou absolutamente nada disso

E ou OU ou E e OU ou absolutamente nada disso

Mensagempor Dan » Dom Mar 20, 2011 01:34

Gente! A minha dúvida em poucas palavras é: porque algumas pessoas quando terminam uma resolução através da fórmula de Bhaskara costumam dizer x' OU x''?
Ok, do ponto de vista lógico uma disjunção é verdadeira se pelo menos uma das proposições é verdadeira. O que eu estou questionando é outra coisa:

Por exemplo, tomemos a equação {x}^{2} - x - 2 = 0 cujas raízes são -1 e 2.

Porque dizer -1 ou 2? Ora, se para a disjunção der verdadeira pelo menos uma das proposições deve ser verdadeira, então também é verdadeiro que a solução para esta equação é -1 ou 3.

Eu discuti isso com uma colega, e nós chegamos à conclusão de que em aplicações envolvendo a equação do segundo grau em que apenas um valor é considerado, usamos a disjunção para especificar que pelo menos um dos valores é válido.

Porém, no caso de determinação de raízes, o formal é utilizar a conjunção, certo?
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: E ou OU ou E e OU ou absolutamente nada disso

Mensagempor MarceloFantini » Dom Mar 20, 2011 11:43

Sim, o formal seria usar a conjunção.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.