por Rejane Sampaio » Qua Set 17, 2008 16:20
O consumo de eletricidade para a produção de alumínio é altamente inteensivo, porém vem decrescendo. Enquanto que em 1950, a indústria consumia 24000 KWh/t, as modernas fundições consomem13000 KWh/t. Considere que o consumo de eletricidade para produção de alumínio tenha decrescido em PA década por década, chegando a 13000 KWh/t em 2000. Desse modo, o consumo de eletricidade para a produção de alumínio na década de 80, em KWh/t era: Resp- 11000 KWh/t
Não consegui nem começar, alguém pode me ajudar?
-
Rejane Sampaio
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Sex Set 12, 2008 22:25
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por juliomarcos » Qui Set 18, 2008 13:07
Pelo texto, o consumo vem diminuindo. Logo o consumo de 2000 tem que ser menor que o da década de 80, o que contrária a sua resposta.
Se de 1950 a 2000 reduziu 11000 (24000 - 13000), então aconteceu uma redução de 2200 (11000 / 5) por década. Logo em 80 teria reduzido 3 vezes o que dá 24000 - 2200*3 = 17400.
-
juliomarcos
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Set 14, 2008 00:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (UNIFOR) Progressão Aritmética e Progressão Harmônica
por andersontricordiano » Ter Mar 22, 2011 12:56
- 1 Respostas
- 5924 Exibições
- Última mensagem por LuizAquino

Ter Mar 22, 2011 13:52
Progressões
-
- Progressão aritmética e progressão geométrica
por Danilo Dias Vilela » Sex Mar 12, 2010 13:41
- 1 Respostas
- 4497 Exibições
- Última mensagem por thadeu

Sex Mar 12, 2010 17:36
Progressões
-
- [Aritmética] Progressão Aritmética.
por Pessoa Estranha » Qua Ago 28, 2013 22:11
- 2 Respostas
- 5371 Exibições
- Última mensagem por Pessoa Estranha

Qui Ago 29, 2013 16:06
Aritmética
-
- Progressão Aritmética (PA)
por Cleyson007 » Ter Jan 27, 2009 21:40
- 2 Respostas
- 8173 Exibições
- Última mensagem por Cleyson007

Sáb Mai 30, 2009 12:31
Progressões
-
- Progressão Aritmética
por Carolziiinhaaah » Seg Jun 14, 2010 18:12
- 2 Respostas
- 2483 Exibições
- Última mensagem por Carolziiinhaaah

Ter Jun 15, 2010 12:24
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.