Definições do livro do Castrucci:
Um corpo é um anel com elemento unidade 1, onde todo elemento -{0}(elemento neutro da +) possui inverso.
Um domínio de integridade (ou anel de integridade) é um anel comutativo(vale a comutatividade na segunda operação(1) ) com elemento unidade e não possui divisores próprios do zero(2).
Todo corpo é domínio de integridade. Prova:
Seja C um corpo. Como vale o elemento inverso em C, a.a'=a'.a=1, logo também vale a comutatividade para a segunda operação. (1)
Suponha por absurdo que 0 tem inverso.
0.0'=1
0.0' + 0 = 1 + 0
0.(0' + 0) = 1
0 = 1
Absurdo, já que 0 é diferente de 1, logo 0.0'
1 ou 0.0' = 0, mas como 0' não existe em C, 0 não tem divisores próprios.(2)Algum perito em teoria dos conjuntos pode corrigir isto pra mim? Grato.

,
tais que
e
e 
e
tal que

, então
um anel comutativo com unidade.

(o conjunto de todas as matrizes reais 2x2). Cuja unidade é:
,
tal que
).
é único e indicado por
.
satisfaz a propriedade:
tal que
,![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)