• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercicios

Exercicios

Mensagempor Renks » Ter Fev 15, 2011 17:13

(UFF) Em cada uma das duas urnas,A e B, ha apernas,bolas brancas e azuis.
Sabe-se que 60% das bolas contidas em A sao Brancas e que 50% das bolas contidas em B sao azuis.As duas urnas juntas contem 500 bolas, das quais 44% sao azuis.Determine quantas bolas ha em cada urna.


urna A tem 0.6 brancas e 0.4 azuis urna B tem 0.5 de cada cor de 500 bolas 44% sao azuis entao achei que B.azul total= 220 B.branca total = 280
tentei por regra de 3 achar a quantia de bolas azuis e brancas em cada urna,mas encontrei valores quebrados cuja soma nao da 500.
gostaria de ver um metodo para resolver.

gabarito Urna A=300 Urna B =200
Renks
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 14, 2011 20:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Exercicios

Mensagempor DanielFerreira » Qui Fev 17, 2011 16:23

Olá Renks,
(UFF) Em cada uma das duas urnas,A e B, ha apernas,bolas brancas e azuis.
Sabe-se que 60% das bolas contidas em A sao Brancas e que 50% das bolas contidas em B sao azuis.As duas urnas juntas contem 500 bolas, das quais 44% sao azuis.Determine quantas bolas ha em cada urna.

Total de bolas azuis:
44% * 500 = 220

Total de bolas vermelhas:
500 - 220 = 280

Bolas em "B":
\frac{50}{100} . B = azuis

\frac{50}{100} . B = brancas

Bolas em "A":
\frac{60}{100} . B = brancas

\frac{40}{100} . B = azuis

Agora, somemos as quantidades de bolas azuis e brancas com suas respectivas urnas.
Urna A:

\frac{50B}{100} + \frac{60A}{100} = 280


Urna B:

\frac{50B}{100} + \frac{40A}{100} = 220


resolvendo esse sistema, multiplicando por (- 1) a 2ª equação:

\frac{50B}{100} - \frac{50B}{100} + \frac{60A}{100} - \frac{40A}{100} = 280 - 220

\frac{60A}{100} - \frac{40A}{100} = 60

\frac{20A}{100} = 60

A = 300

Então, 500 - 300 =
200 = B
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Exercicios

Mensagempor Renks » Dom Fev 20, 2011 19:36

Muito obrigado.
Renks
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Seg Fev 14, 2011 20:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Exercicios

Mensagempor DanielFerreira » Ter Fev 22, 2011 16:37

:y:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}