• Anúncio Global
    Respostas
    Exibições
    Última mensagem

regra de três

regra de três

Mensagempor clovis22 » Dom Jan 16, 2011 18:53

Esta também tentei e não consegui. a forma de se resolver é por regra de três, mas mesmo assim, não consegui.

(Fatec-SP) Um certo setor de uma empresa tem várias máquinas, todas com o mesmo custo operacional por hora. Se o custo de operação de 3 delas, em 2 dias, funcionando 6 horas por dia, é de R reais, então o custo de operação, em reais, de 2 delas, em 4 dias, funcionando 5 horas por dia, é igual a:

a) \frac{8R}{9}

b) \frac{10R}{9}

c) 2R

d) 2,5R

e) 5R

De acordo com o gabarito a resposta é a letra B.
clovis22
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Jan 14, 2011 14:02
Formação Escolar: GRADUAÇÃO
Área/Curso: LETRAS
Andamento: formado

Re: regra de três

Mensagempor PedroSantos » Dom Jan 16, 2011 19:28

A solução passa por considerar o número total de horas em cada caso.

1º caso: 3 maquinas x 2 dias x 6 horas = 36 horas

2º caso: 2 maquinas x 4 dias x 5 horas =40 horas

Como o custo hora/maquina é igual para os dois casos pode-se aplicar a proporcionalidade directa.
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

Re: respondendo a Pedro Santos

Mensagempor clovis22 » Seg Jan 17, 2011 05:49

Desculpe-me Pedro Santos, mas eu tentei como você disse e não consegui chegar à resposta:


\frac{R}{X}= \frac{3}{2} x \frac{36}{40}
\frac{R}{X}= \frac{3}{2} x \frac{40}{36}
\frac{R}{X}= \frac{2}{3} x \frac{36}{40}
\frac{R}{X}= \frac{2}{3} x \frac{40}{36}

Pode ser que eu não tenha entendido o que você escreveu ou o gabarito esteja errado ou eu não estou sabendo resolver de jeito nenhum essa questão. De qualquer forma obrigado pela dica.
clovis22
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Jan 14, 2011 14:02
Formação Escolar: GRADUAÇÃO
Área/Curso: LETRAS
Andamento: formado

Re: regra de três

Mensagempor PedroSantos » Seg Jan 17, 2011 13:05

Textualmente:
Se 36 horas está para R então 40 horas estará para x.

Simbolicamente:

\frac{36}{40}=\frac{R}{x} Multiplicam-se os extremos

36x=40R Resolve-se em ordem a x

x=\frac{40R}{36} divide-se o denominador e o numerador por 4

x=\frac{10R}{9}
PedroSantos
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Dez 01, 2010 16:38
Formação Escolar: ENSINO MÉDIO
Área/Curso: ensino secundário
Andamento: cursando

agradecendo a Pedro Santos

Mensagempor clovis22 » Seg Jan 17, 2011 15:38

Pô, cara! Valeu pela dica. Entendi agora. Vou procurar mais questões semelhantes para eu me aprimorar. Valeu mesmo, muito obrigado.
clovis22
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Jan 14, 2011 14:02
Formação Escolar: GRADUAÇÃO
Área/Curso: LETRAS
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?