• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Símbolo do Batman no Geogebra

Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Símbolo do Batman no Geogebra

Mensagempor Renato_RJ » Sex Dez 23, 2011 23:41

Olá amigos, estou aproveitando as férias da faculdade para estudar mais sobre alguns softwares, e um deles é o Geogebra...

Segue o símbolo do Batman que eu fiz no mesmo, abaixo vai as funções para que outros possam refazer em suas casas..

Imagem

--------------------------------------------------------------------------------------
f(x) = 1.5 sqrt(-abs(abs(x) - 1) abs(3 - abs(x)) / ((abs(x) - 1) (3 - abs(x)))) (1 + abs(abs(x) - 3) / (abs(x) - 3)) sqrt(1 - (x / 7)²) + (4.5 + 0.75 (abs(x - 0.5) + abs(x + 0.5)) - 2.75 (abs(x - 0.75) + abs(x + 0.75))) (1 + abs(1 - abs(x)) / (1 - abs(x)))
--------------------------------------------------------------------------------------
g(x) = abs(x / 2) - 0.09137 x² - 3 + sqrt(1 - (abs(abs(x) - 2) - 1)²)
--------------------------------------------------------------------------------------
h(x) = -3 sqrt(1 - (x / 7)²) sqrt(abs(abs(x) - 4) / (abs(x) - 4))
---------------------------------------------------------------------------------------
m(x) = (2.71052 + 1.5 - 0.5 abs(x) - 1.35526 sqrt(4 - (abs(x) - 1)²)) sqrt(abs(abs(x) - 1) / (abs(x) - 1))

Abraços a todos !!!
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Voltar para Mensagens Matemáticas

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59