
Filho de um astrólogo famoso chamado Mahesvara, tornou-se conhecido pela complementação da obra do conterrâneo Brahmagupta, por exemplo dando pioneiramente a solução geral da conhecida equação de Pell e a solução de um problema da divisão por zero, ao afirmar também pioneiramente, em sua publicação Vija-Ganita ou Bijaganita, um trabalho em 12 capítulos, que tal quociente seria infinito.
Tornou-se chefe do observatório astronômico a Ujjain, cidade onde ficou até morrer e o principal centro matemático da Índia na sua época, fama desenvolvida por excelentes matemáticos como Varahamihira e Brahmagupta, que ali tinham trabalhado e construído uma forte escola de astronomia matemática.
Sua obra representou a culminação de contribuições hindus anteriores. Seis trabalhos seus são conhecidos e um sétimo trabalho, reivindicado para ele, é considerado por muitos historiadores como uma não falsificação posterior.
A fórmula de Bhaskara, utilizada para determinar as raízes de uma equação quadrática é:
[tex]-b+-\sqrt{b^2-4.a.c}/frac(2.a)[tex]
Livros:
- O livro mais famoso de Bhaskara Acharya é o Lilavati, obra elementar dedicada a problemas simples de aritmética, geometria plana (medidas e trigonometria elementar ) e combinatória.
- A palavra Lilavati é um nome próprio de mulher (a tradução é "Graciosa"), e a razão de ter dado esse título a seu livro é porque, provavelmente, teria desejado fazer um trocadilho comparando a elegância de uma mulher da nobreza, com a elegância dos métodos da aritmética.
- Numa tradução turca desse livro, feita 400 anos mais tarde, teria sido inventada a história de que o livro seria uma homenagem à filha que não pode se casar.


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.