Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por SERGIO_CC » Sex Ago 13, 2010 16:03
Um caminhão de transportes possui um modulo traseiro com a forma de um quadrado , cujo lado mede 1 m.?
os vértices desse quadrado sao pontos de iluminaçao.
construa uma matriz A 4x4, em que Aij é igual a distancia entre os pontos i e j.
-
SERGIO_CC
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Ago 13, 2010 15:54
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Ter Ago 17, 2010 16:32
SERGIO_CC escreveu:Um caminhão de transportes possui um modulo traseiro com a forma de um quadrado , cujo lado mede 1 m.?
os vértices desse quadrado sao pontos de iluminaçao.
construa uma matriz A 4x4, em que Aij é igual a distancia entre os pontos i e j.
Boa tarde, Sérgio.
Vamos supor a traseira do caminhão, da forma que nas pontas (vértices) são formados pelas letras:
AB
CDnesta ordem
Vamos definir que

é a distância entre os pontos x e y. Assim,






Note que

Agora faça para o caso da matriz, considerando i e j os pontos de A a D.
Não esqueça que

, pois a distância de um vértice a ele mesmo é nula.
Caso não consiga fazer ainda, avise!
Bom estudo,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por SERGIO_CC » Qui Ago 19, 2010 01:46
molina escreveu:SERGIO_CC escreveu:Um caminhão de transportes possui um modulo traseiro com a forma de um quadrado , cujo lado mede 1 m.?
os vértices desse quadrado sao pontos de iluminaçao.
construa uma matriz A 4x4, em que Aij é igual a distancia entre os pontos i e j.
Boa tarde, Sérgio.
Vamos supor a traseira do caminhão, da forma que nas pontas (vértices) são formados pelas letras:
AB
CDnesta ordem
Vamos definir que

é a distância entre os pontos x e y. Assim,






Note que

Agora faça para o caso da matriz, considerando i e j os pontos de A a D.
Não esqueça que

, pois a distância de um vértice a ele mesmo é nula.
Caso não consiga fazer ainda, avise!
Bom estudo,

tudo bem, em eu não consegui jogar na matriz mas ficou bem explicado o que vc passou.
-
SERGIO_CC
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Ago 13, 2010 15:54
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Qui Ago 19, 2010 22:34
Boa noite.
Imagine a traseira do caminhão conforme o desenho abaixo.

- caminhao.JPG (5.76 KiB) Exibido 9900 vezes
Vamos construir uma matriz que trata a distância entre os pontos:

onde

é a distância do ponto

ao ponto

Note que quando

a distância é zero, pois seria a distância de um ponto a ele mesmo.
Sendo assim a matriz com os valores fica:

;y:
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por marcio borges » Dom Set 25, 2011 22:51
gostei da explicação
-
marcio borges
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Set 20, 2011 21:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matematica
- Andamento: cursando
por Addlink1114 » Sex Mar 04, 2016 06:48
Muy bonito, me hace entender más..
????????????
-
Addlink1114
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Ago 01, 2015 06:20
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
Voltar para Mensagens Matemáticas
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6750 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
-
- [Matriz]- inversa de uma matriz
por Ana_Rodrigues » Seg Mar 26, 2012 08:54
- 2 Respostas
- 3302 Exibições
- Última mensagem por Ana_Rodrigues

Seg Mar 26, 2012 18:05
Matrizes e Determinantes
-
- [MATRIZ]Determinante da Matriz 4x4
por LAZAROTTI » Qui Mai 03, 2012 22:33
- 1 Respostas
- 6504 Exibições
- Última mensagem por LuizAquino

Sex Mai 11, 2012 08:00
Matrizes e Determinantes
-
- [Matriz] Matriz com potencias
por rochadapesada » Dom Abr 07, 2013 20:29
- 3 Respostas
- 4430 Exibições
- Última mensagem por DanielFerreira

Seg Abr 08, 2013 17:32
Matrizes e Determinantes
-
- matriz
por Barbara » Ter Ago 18, 2009 15:26
- 4 Respostas
- 4556 Exibições
- Última mensagem por Molina

Qui Ago 20, 2009 18:11
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.